

# AHL5419T8 Data Sheet Ultra Flat Gain Low Noise Amplifier

#### 1. Product Overview

#### 1.1 **General Description**

AHL5419T8, a ultra flat gain low noise amplifier MMIC, has high linearity, low noise and high efficiency over a wide range of frequency from 50 MHz to 4000 MHz, being suitable for use in both receiver and transmitter of telecommunication system. It has an active bias network for stable current over temperature and process variation. The amplifier is available in a TDFN8 package and passes through the stringent DC, RF, and reliability tests.

#### 1.2 **Features**

- Gain decreases from 20.3 dB to 20.2 dB at 0.05~3.5 GHz (20.5 dB at 2.0 GHz)
- NF of 1.0~1.5 dB at 0.05~3.5 GHz (1.35 dB at 3.0 GHz)
- 19.0 dBm P1dB at 2000 MHz
- 34.0 dBm OIP3 at 2000 MHz
- 50  $\Omega$  input & output matching
- MTTF > 100 Years
- Single Supply: +3 ~ 5 V

#### 1.3 **Applications**

- Wide-band application at 50 ~ 4000 MHz
- V-ONU (70 ~ 3240 MHz)
- Other Low Noise Application

#### 1.4 Package Profile & RoHS Compliance





# 2. Summary on Product Performances

# 2.1 Typical Performance

Supply voltage = +5.0 V,  $T_A$  = +25 °C,  $Z_O$  = 50  $\Omega$ .

| Cupply Voltago  | · 0.0 V, 1A | . 20 0 | , 20 00 . | · ·   |       |       |       |       |      |
|-----------------|-------------|--------|-----------|-------|-------|-------|-------|-------|------|
| Parameter       | Typical     |        |           |       |       |       |       |       | Unit |
| Frequency       | 50          | 1000   | 1500      | 2000  | 2500  | 3000  | 3500  | 4000  | MHz  |
| Gain            | 20.3        | 20.4   | 20.5      | 20.5  | 20.4  | 20.4  | 20.2  | 19.3  | dB   |
| S11             | -14.0       | -18.0  | -20.0     | -20.0 | -18.0 | -15.0 | -11.0 | -9.0  | dB   |
| S22             | -12.0       | -13.0  | -13.0     | -12.0 | -11.0 | -10.0 | -10.0 | -10.0 | dB   |
| Noise Figure 1) | 1.00        | 1.00   | 1.05      | 1.10  | 1.25  | 1.35  | 1.50  | 1.75  | dB   |
| Output IP3 2)   | 36.0        | 36.0   | 35.0      | 34.0  | 33.0  | 33.0  | 32.0  | 32.0  | dBm  |
| Output P1dB     | 19.0        | 19.0   | 19.0      | 19.0  | 19.0  | 18.0  | 18.0  | 18.0  | dBm  |
| Current         | 80          |        |           |       |       |       |       |       | mA   |
| Device Voltage  | 5           |        |           |       |       |       |       |       | V    |

<sup>1)</sup> Noise figure is measured at the connectors on the board. (i.e. not de-embedded)

## 2.2 Product Specification

Supply voltage = +5.0 V,  $T_A$  = +25 °C,  $Z_O$  = 50  $\Omega$ .

| Parameter      | Min | Тур   | Max | Unit |
|----------------|-----|-------|-----|------|
| Frequency      |     | 2000  |     | MHz  |
| Noise Figure   |     | 1.10  |     | dB   |
| Gain           |     | 20.5  |     | dB   |
| S11            |     | -20.0 |     | dB   |
| S22            |     | -12.0 |     | dB   |
| Output IP3     |     | 34.0  |     | dBm  |
| Output P1dB    |     | 19.0  |     | dBm  |
| Current        |     | 80    |     | mA   |
| Device Voltage |     | +5.0  |     | V    |

## 2.3 Pin Configuration

| Pin             | Description    | Simplified Outline |
|-----------------|----------------|--------------------|
| 2               | RF IN          |                    |
| 7               | RF OUT         | 1 8                |
| 5               | Current adjust | 3 6                |
| 1, 3, 4, 6, 8   | NC or GND      | 4                  |
| Backside paddle | GND            |                    |

<sup>2)</sup> OIP3 is measured with two tones at the output power of +4 dBm/tone separated by 1 MHz.



#### 2.4 Absolute Maximum Ratings

| Parameters                               | Max. Ratings   |
|------------------------------------------|----------------|
| Operation Case Temperature               | -40 to +85 °C  |
| Storage Temperature                      | -40 to +150 °C |
| Device Voltage                           | +6 V           |
| Operation Junction Temperature           | +150 °C        |
| Input RF Power (CW, 50 $\Omega$ matched) | +27 dBm        |

#### 2.5 Thermal Resistance

| Symbol          | Description                              | Тур | Unit |
|-----------------|------------------------------------------|-----|------|
| R <sub>th</sub> | Thermal resistance from junction to lead | 90  | °C/W |

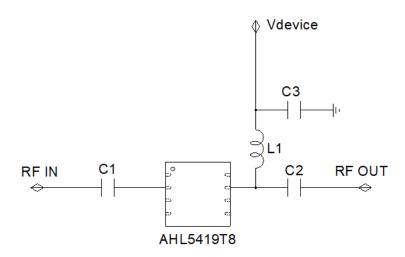
### 2.6 ESD Classification & Moisture Sensitivity Level

#### **ESD Classification**

| HBM | Class 1C | Voltage Level : > 1000 V |  |
|-----|----------|--------------------------|--|

CAUTION: Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

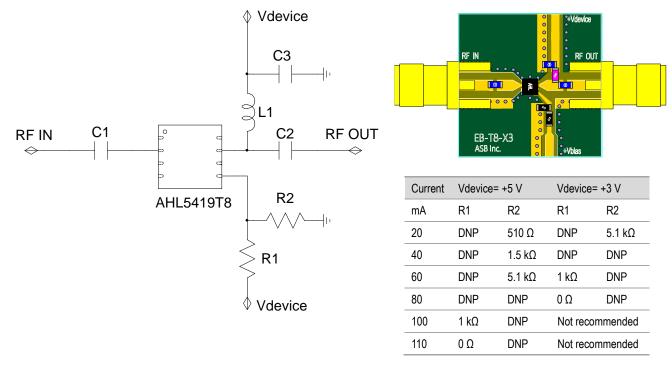
#### Moisture Sensitivity Level


MSL 3 at 260 °C reflow

(Intentionally Blanked)



## 3. Typical Application Circuit and Current Adjust Option

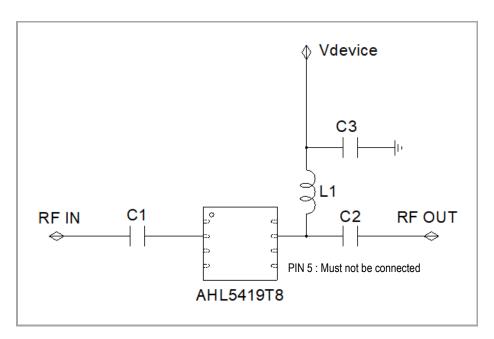

## Typical Application Circuit

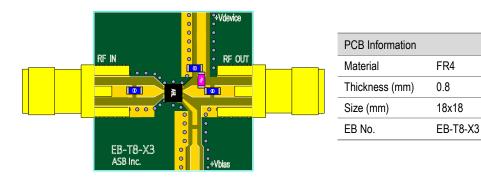


| Component | Value         | Package |
|-----------|---------------|---------|
| C1, C2    | 1 nF          | 0603    |
| C3        | 1 μF          | 0603    |
| L1        | BLM15HD182SN1 | 0402    |

## **Current Adjust Options**

The Pin 5 of AHL5419T8 may be used to adjust the DC operating current by placing either R1 or R2 as shown the schematic below. Placing resistor R2 to ground will reduce the current from typical application level. When using R2 to reduce current do not place (DNP) R1. To increase current from typical application circuit install resistor R1 and connect to V<sub>DD</sub>.





R1 and R2 are not used in typical application.



# 4. Application: $50 \sim 4000 \text{ MHz} \text{ (VDEVICE} = +5 \text{ V)}$

# 4.1 Application Circuit & Evaluation Board

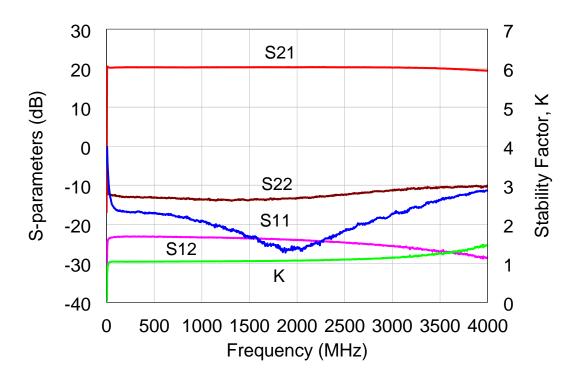




#### Bill of Material

| Symbol    | Value         | Size | Description           | Manufacturer |
|-----------|---------------|------|-----------------------|--------------|
| AHL5419T8 | -             | -    | MMIC amplifier        | ASB          |
| C1        | 1 nF          | 0603 | DC blocking capacitor | Murata       |
| C2        | 1 nF          | 0603 | DC blocking capacitor | Murata       |
| C3        | 1 μF          | 0603 | Decoupling capacitor  | Murata       |
| L1        | BLM15HD182SN1 | 0402 | RF choke inductor     | Murata       |

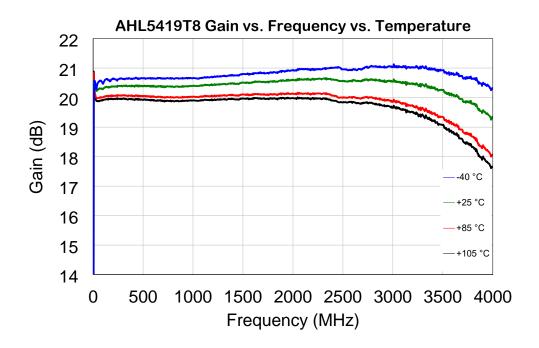


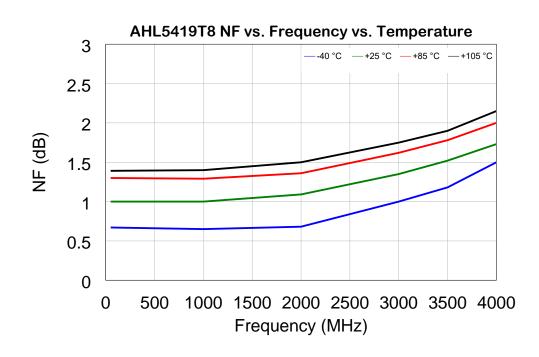

#### 4.2 Performance Table

Supply voltage = +5.0 V,  $T_A = +25 \,^{\circ}\text{C}$ ,  $Z_O = 50 \,\Omega$ .

| Parameter       | Typical |       |       |       |       |       |       |       | Unit |
|-----------------|---------|-------|-------|-------|-------|-------|-------|-------|------|
| Frequency       | 50      | 1000  | 1500  | 2000  | 2500  | 3000  | 3500  | 4000  | MHz  |
| Gain            | 20.3    | 20.4  | 20.5  | 20.5  | 20.4  | 20.4  | 20.2  | 19.3  | dB   |
| S11             | -14.0   | -18.0 | -20.0 | -20.0 | -18.0 | -15.0 | -11.0 | -9.0  | dB   |
| S22             | -12.0   | -13.0 | -13.0 | -12.0 | -11.0 | -10.0 | -10.0 | -10.0 | dB   |
| Noise Figure 1) | 1.00    | 1.00  | 1.05  | 1.10  | 1.25  | 1.35  | 1.50  | 1.75  | dB   |
| Output IP3 2)   | 36.0    | 36.0  | 35.0  | 34.0  | 33.0  | 33.0  | 32.0  | 32.0  | dBm  |
| Output P1dB     | 19.0    | 19.0  | 19.0  | 19.0  | 19.0  | 18.0  | 18.0  | 18.0  | dBm  |
| Current         | 80      |       |       |       |       |       |       |       | mA   |
| Device Voltage  | 5       |       |       |       |       |       |       |       | V    |

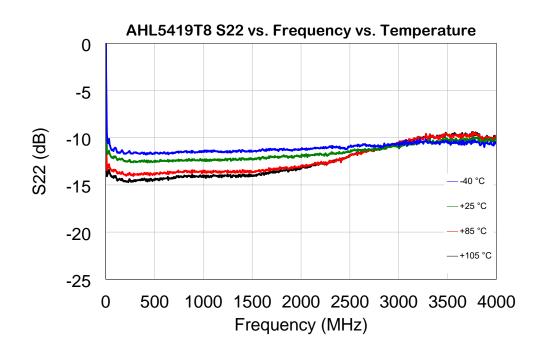
<sup>1)</sup> Noise figure is measured at the connectors on the board. (i.e. not de-embedded)


#### 4.3 Plot of S-parameters and K-factor

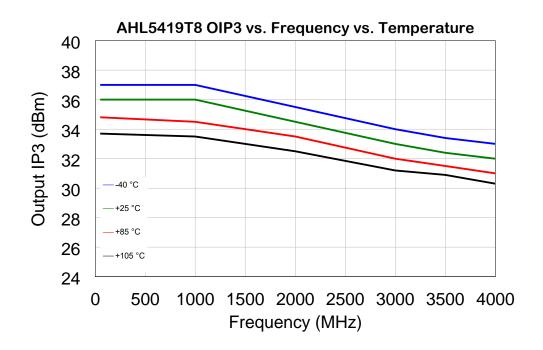


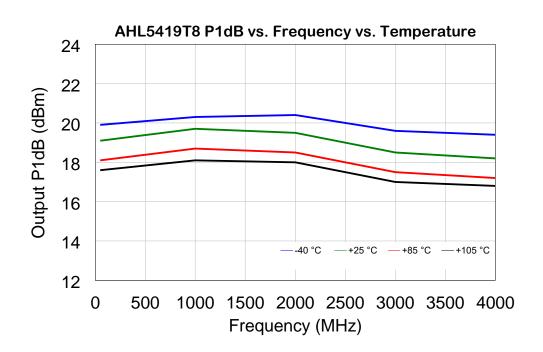

<sup>2)</sup> OIP3 is measured with two tones at the output power of +4 dBm/tone separated by 1 MHz.



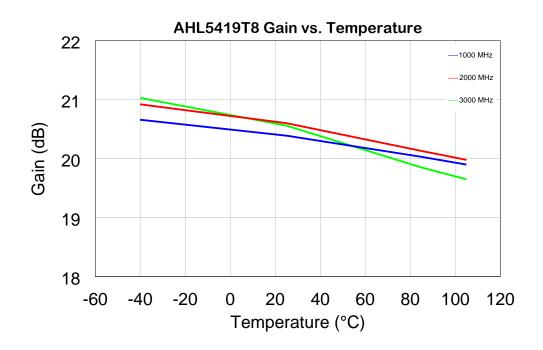

### 4.4 Plots of Noise Figure and Performances with Temperature

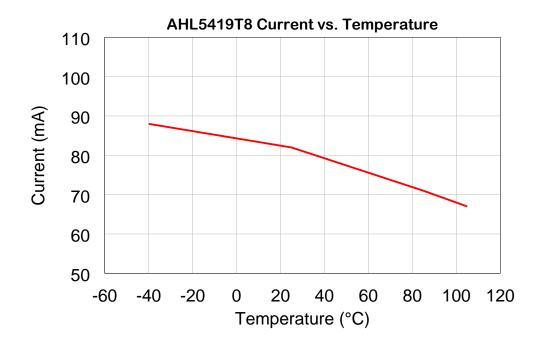




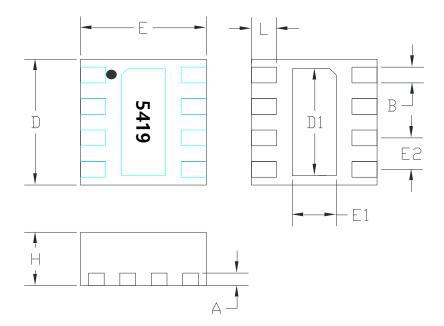


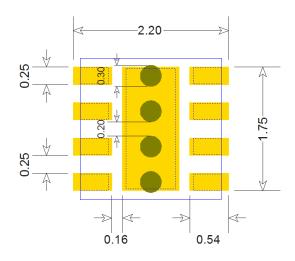








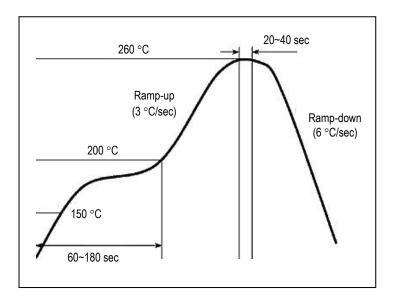




# 5. Package Outline (TDFN8)



|         | Currel ala Dimensions (In mm) |         |      |  |  |  |  |  |  |
|---------|-------------------------------|---------|------|--|--|--|--|--|--|
| Symbols | MIN                           | NOM     | MAX  |  |  |  |  |  |  |
| A       | -                             | 0.20REF | -    |  |  |  |  |  |  |
| В       | 0.20                          | 0.25    | 0.30 |  |  |  |  |  |  |
| D       | 1.95                          | 2.00    | 2.05 |  |  |  |  |  |  |
| D1      | -                             | 1.6BSC  | -    |  |  |  |  |  |  |
| E       | 1.95                          | 2.00    | 2.05 |  |  |  |  |  |  |
| E1      | -                             | 0.9BSC  | -    |  |  |  |  |  |  |
| E2      | -                             | 0.5BSC  | -    |  |  |  |  |  |  |
| L       | 0.20                          | 0.30    | 0.40 |  |  |  |  |  |  |
| Н       | 0.70                          | 0.75    | 0.80 |  |  |  |  |  |  |

# 6. Surface Mount Recommendation (In mm)




#### NOTE

- The number and size of ground via holes in a circuit board is critical for thermal and RF grounding considerations.
- Recommend that the ground via holes be placed on the bottom of exposed pad of the device for better RF and thermal performance, as shown in the drawing at the left side.



# 7. Recommended Soldering Reflow Profile



(End of Datasheet)

Copyright ©2024 ASB Inc. All rights reserved. Specifications subject to change without notice. ASB assumes no responsibility for any errors which may appear in this datasheet. No part of the datasheet may be copied or reproduced in any form or by any means without the prior written consent of ASB.