S

Low Noise GPS, GLONASS, Galileo and Compass Amplifier

Features

GPS, GLONASS, Galileo and Compass LNA
21 dB Gain at 1575 MHz
0.7 dB NF at 1575 MHz
Power ON, OFF Function
Supply Voltage = 1.8 ~ 5.0 V

Description

ASL20G is an LNA for GPS, GLONASS, Galileo, Compass in mobile equipment which requires lower current and lower noise. Power saving function is built in. Low noise performance is kept over the wide range of power enable voltage and DC power supply voltage.

ASL20G

Package Style: UQFN6

Applications

GPS, GLONASS, Galileo, Compass

∎1559 ~ 1610MHz (1.8 V, 6	mA,
Robust ESD, ±10 kV)	

■1559 ~ 1610MHz (1.8 V, 3 mA, Robust ESD, ±10 kV)

 1559 ~ 1610MHz (3 V, 12 mA, Robust ESD, ±10 kV)

- "1559 ~ 1610MHz (1.8 V, 2 mA)
- •1559 ~ 1610MHz (1.8 V, 3 mA)
- "1559 ~ 1610MHz (1.8 V, 6 mA)
- 1559 ~ 1610MHz (2.7 V, 2.5 mA)
- •1559 ~ 1610MHz (3 V, 12 mA)
- •1559 ~ 1610MHz (3 V, 4 mA)
- 1559 ~ 1610MHz (3.3 V, 5 mA)

Pin Configuration

Pin No.	Function
1	RFOUT
2	VCTL
3	GND
4	RFIN
5	GND
6	NC(Not connected)

Typical Performance (Supply Voltage = Device Voltage , $T_A = +25 \text{ °C}$, $Z_0=50 \Omega$)

Parameters	Units	Typical							
Testing Frequency	MHz	1575	1575	1575	1575	1575	1575	1575	1575
Gain	dB	16.5	18	16.0	21.0	17.0	22.5	21.0	21.5
S11	dB	-8	-9	-15	-10	-6	-15	-10	-10
S22	dB	-15	-13	-15	-14	-18	-15	-15	-16
Noise Figure	dB	1.05	1.0	0.95	0.7	1.10	0.65	0.8	0.8
Input IP31)	dBm	-15	-15	-5	-18	-16	-12	-18	-17
Output P1dB	dBm	-8	-7	1	-5	-9	0	-4.0	-3.5
Supply Current	mA	2.0	3.0	6.0	6.0	2.5	12.0	4	5
Supply Voltage	V	1.8	1.8	1.8	1.8	2.7	3.0	3.0	3.3
Control Current	μA	300	300	300	300	300	300	300	300
Control Voltage	V	+1.8	+1.8	+1.8	+1.8	+2.7	+3.0	+3.0	+3.3

1) IIP3 is measured with two tones at an input power of -40 dBm/tone separated by 1MHz.

Robust ESD(±10kV)

Parameters	Units	Typical		
Testing Frequency	MHz	1575	1575	1575
Gain	dB	22	18	23
S11	dB	-15	-12	-10
S22	dB	-15	-9	-15
Noise Figure	dBm	1.05	1.2	1.00
Input IP3	dB	-18 ¹⁾	-16 ²⁾	-8 ¹⁾
Output P1dB	dBm	-4	-7	1
Supply Current	mA	6.0	3.0	12.0
Supply Voltage	V	1.8	1.8	3
Control Current	μA	300	300	300
Control Voltage V_{CTL}	V	+1.8	+1.8	+3.0

1) IIP3 is measured with two tones at an input power of -40 dBm/tone separated by 1MHz.

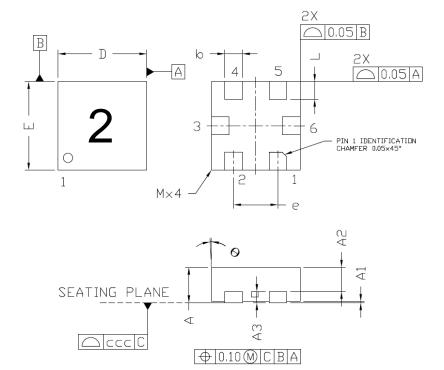
2) IIP3 is measured with two tones at an input power of -30 dBm/tone separated by 1MHz.

Low Noise GPS, GLONASS, Galileo and Compass Amplifier

Product Specifications

Parameters	Units	Min	Тур	Max
Frequency	MHz		1575	
Gain	dB		21	
S11	dB		-10	
S22	dB		-14	
Noise Figure	dB		0.7	
Supply Current	mA	4	6	8
Supply Voltage	V		1.8	
Control Current	μA		300	
Control Voltage V _{CTL} ¹⁾	V		+1.8	

1) Power On V_{CTL} Voltage = 0.5 V < V_{\text{CTL}} < 5


Absolute Maximum Ratings

Parameters	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-40 to +150 °C
Supply Voltage	+6 V
Operating Junction Temperature	+150 °C
Input RF Power (CW, 50 Ω matched) ¹⁾	+5 dBm

1) Please find the max. input power data from <u>http://www.asb.co.kr/pdf/Maximum Input Power Analysis.pdf</u>

Low Noise GPS, GLONASS, Galileo and Compass Amplifier

Outline Drawing

Dimen		sions in Millimeters		
Symbol	MIN	NDM	MAX	
Α	0.35		0.40	
A1	0.00		0.05	
A2	0'553		0,273	
A3		0.127REF		
b	0.15	0.20	0.25	
D	0,95	1,00	1.03	
E	0.95	1.00	1.03	
e		0.50BSC		
L	0,15	0,20	0,25	
θ	-12		0	
ССС		0.05		
М			0.05	
Burr	0.00	0.03	0.06	

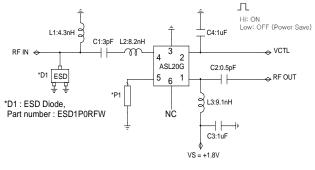
Pin NO.	Function	Pin NO.	Function.
1	RFOUT	4	RFIN
2	VCTL	5	GND
3	GND	6	NC(not connected)

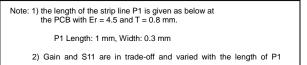
ESD Classification & Moisture Sensitivity Level ESD Classification

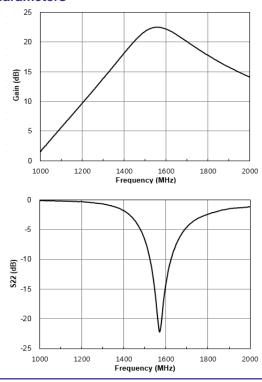
HBM Class 0 Voltage Level: 200 V MM Class A Voltage Level: 50 V

CAUTION: ESD-sensitive device!

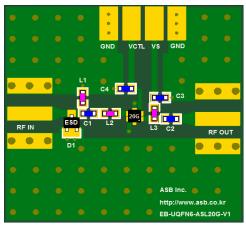
Moisture Sensitivity Level (MSL)

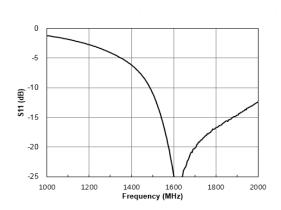

Level 3 at 260 °C reflow


Low Noise GPS, GLONASS, Galileo and Compass Amplifier


1) Test Method : Contact discharge on RF input. Applying 10 times repeated voltage at 1 sec time interval.

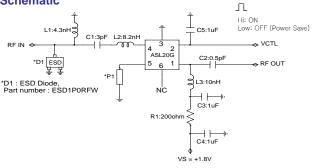
Schematic

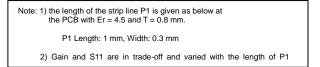


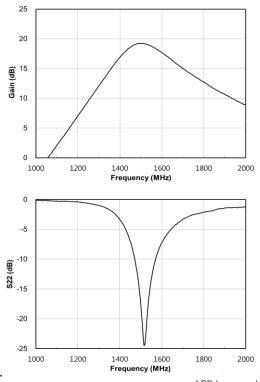

S-parameters

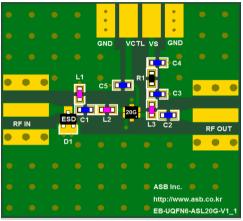
Frequency (MHz)	1559 ~ 1610
Magnitude S21 (dB)	22
Magnitude S11 (dB)	-15
Magnitude S22 (dB)	-15
Noise Figure (dB)	1.05
Input IP3 (dBm) ¹⁾	-18
Output P1dB (dBm)	-4
Supply Current (mA)	6
Supply Voltage (V)	+1.8
Control Current (µA)	300
Control Voltage V_{CTL} (V)	+1.8

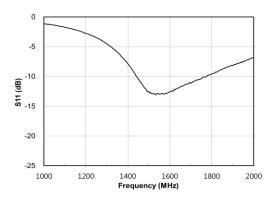
1) IIP3 is measured with two tones at an input power of -40 dBm/tone separated by 1MHz.




Low Noise GPS, GLONASS, Galileo and Compass Amplifier

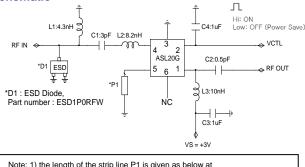

1) Test Method : Contact discharge on RF input. Applying 10 times repeated voltage at 1 sec time interval.


S-parameters

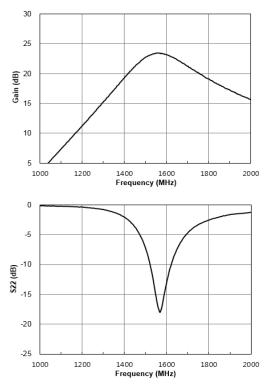


Frequency (MHz)	1559 ~ 1610
Magnitude S21 (dB)	18
Magnitude S11 (dB)	-12
Magnitude S22 (dB)	-9
Noise Figure (dB)	1.2
Input IP3 (dBm) ¹⁾	-16
Output P1dB (dBm)	-7
Supply Current (mA)	3
Supply Voltage (V)	+1.8
Control Current (µA)	300
Control Voltage V_{CTL} (V)	+1.8

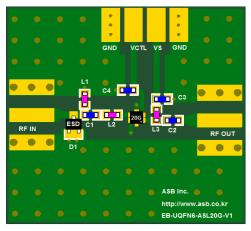
1) IIP3 is measured with two tones at an input power of -30 dBm/tone separated by 1MHz.

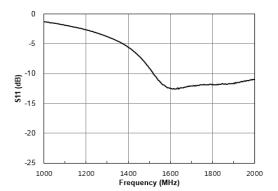


Low Noise GPS, GLONASS, Galileo and Compass Amplifier

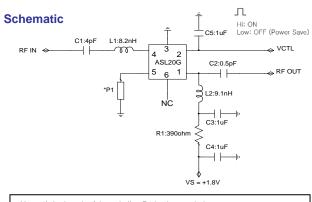

1) Test Method : Contact discharge on RF input. Applying 10 times repeated voltage at 1 sec time interval.

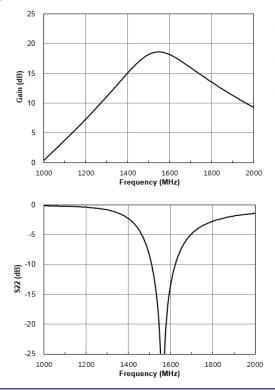
Schematic

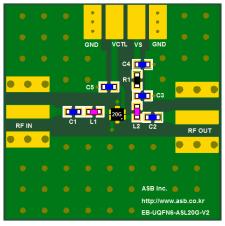

Note: 1) the length of the strip line P1 is given as below at the PCB with Er = 4.5 and T = 0.8 mm. *P1 Length: 1 mm, Width: 0.3 mm 2) Gain and S11 are in trade-off and varied with the length of P1

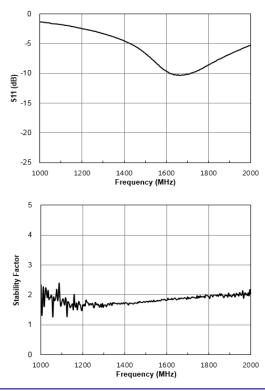

S-parameters

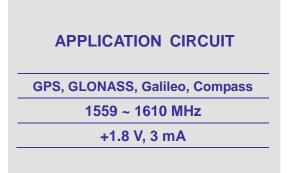
Frequency (MHz)	1559 ~ 1610
Magnitude S21 (dB)	23
Magnitude S11 (dB)	-10
Magnitude S22 (dB)	-15
Noise Figure (dB)	1
Input IP3 (dBm) ¹⁾	-8
Output P1dB (dBm)	1
Supply Current (mA)	12
Supply Voltage (V)	+3.0
Control Current (µA)	300
Control Voltage V_{CTL} (V)	+3.0

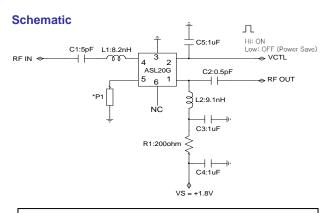

1) IIP3 is measured with two tones at an input power of -40 dBm /tone separated by 1MHz

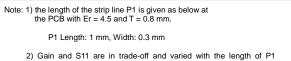

Low Noise GPS, GLONASS, Galileo and Compass Amplifier

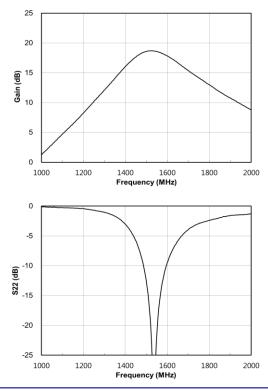

Note: 1) the length of the strip line P1 is given as below at the PCB with Er = 4.5 and T = 0.8 mm.
P1 Length: 1 mm, Width: 0.3 mm
2) Gain and S11 are in trade-off and varied with the length of P1

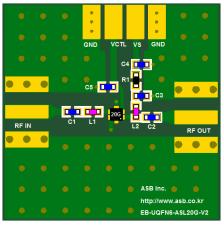

S-parameters & K-factor

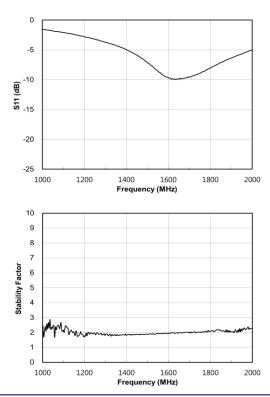

Frequency (MHz)	1559 ~ 1610
Magnitude S21 (dB)	16.5
Magnitude S11 (dB)	-8
Magnitude S22 (dB)	-15
Noise Figure (dB)	1.05
Input IP3 (dBm) 1)	-15
Output P1dB (dBm)	-8
Supply Current (mA)	2
Supply Voltage (V)	+1.8
Control Current (µA)	300
Control Voltage V_{CTL} (V)	+1.8


1) IIP3 is measured with two tones at an input power of -40 dBm/tone separated by 1MHz.



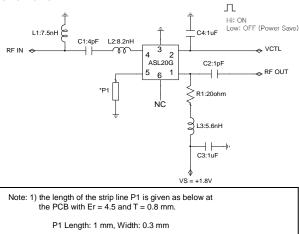

Low Noise GPS, GLONASS, Galileo and Compass Amplifier



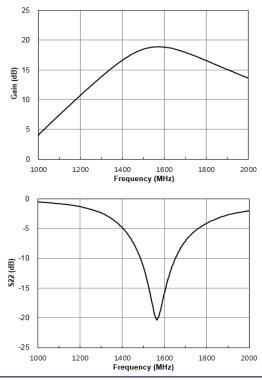

S-parameters & K-factor

Frequency (MHz)	1559 ~ 1610
Magnitude S21 (dB)	18
Magnitude S11 (dB)	-9
Magnitude S22 (dB)	-13
Noise Figure (dB)	1.0
Input IP3 (dBm) 1)	-15
Output P1dB (dBm)	-7
Supply Current (mA)	3
Supply Voltage (V)	+1.8
Control Current (µA)	300
Control Voltage V_{CTL} (V)	+1.8

1) IIP3 is measured with two tones at an input power of -30 dBm/tone separated by 1MHz.

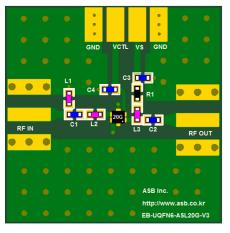


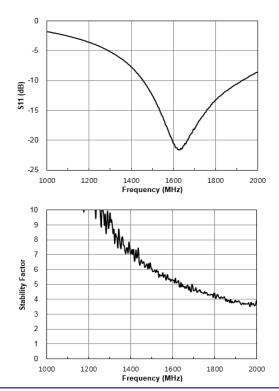
Low Noise GPS, GLONASS, Galileo and Compass Amplifier



Schematic

2) Gain and S11 are in trade-off and varied with the length of P1

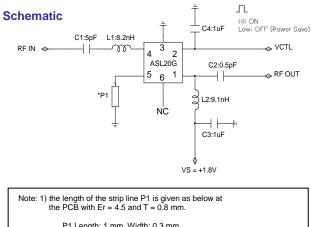

S-parameters & K-factor

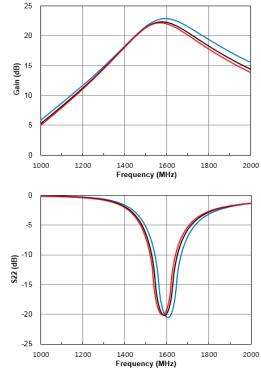


Frequency (MHz)	1559 ~ 1610
Magnitude S21 (dB)	16
Magnitude S11 (dB)	-15
Magnitude S22 (dB)	-15
Noise Figure (dB)	0.95
Input IP3 (dBm) ¹⁾	-5
Output P1dB (dBm)	1
Supply Current (mA)	6
Supply Voltage (V)	+1.8
Control Current (µA)	300
Control Voltage V_{CTL} (V)	+1.8

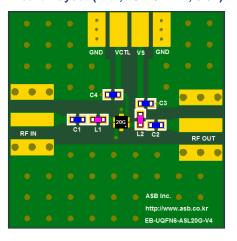
1) IIP3 is measured with two tones at an input power of -40 dBm/tone separated by 1MHz.

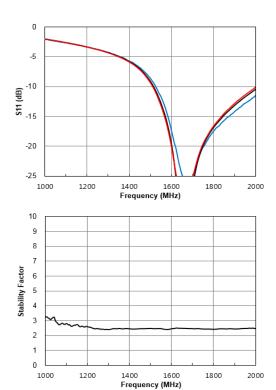
Board Layout (FR4, 20x20 mm², 0.8T)




ASB Inc. • sales@asb.co.kr • Tel: +82-42-528-7225

Low Noise GPS, GLONASS, Galileo and Compass Amplifier

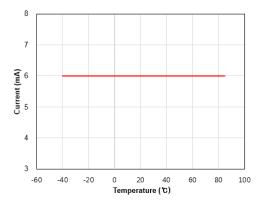

P1 Length: 1 mm, Width: 0.3 mm 2) Gain and S11 are in trade-off and varied with the length of P1

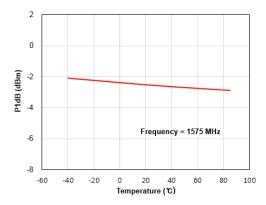


Frequency (MHz)	1559 ~ 1610
Magnitude S21 (dB)	21
Magnitude S11 (dB)	-10
Magnitude S22 (dB)	-14
Noise Figure (dB)	0.7
Input IP3 (dBm) ¹⁾	-18
Output P1dB (dBm)	-5
Supply Current (mA)	6
Supply Voltage (V)	+1.8
Control Current (µA)	300
Control Voltage V_{CTL} (V)	+1.8

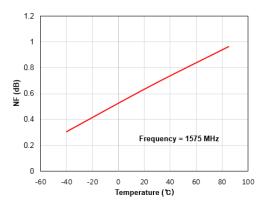
1) IIP3 is measured with two tones at an input power of -40 dBm/tone separated by 1MHz.

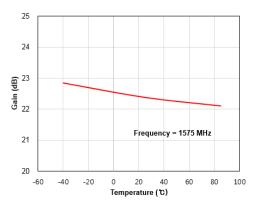
Board Layout (FR4, 20x20 mm², 0.8T)

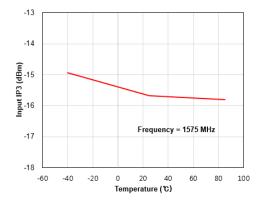


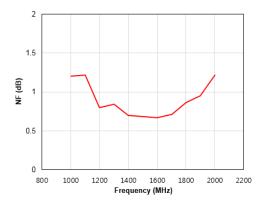

S-parameters & K-factor

Low Noise GPS, GLONASS, Galileo and Compass Amplifier

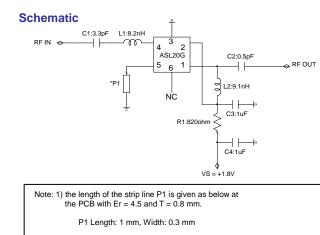

Current vs. Temperature


P1dB vs. Temperature

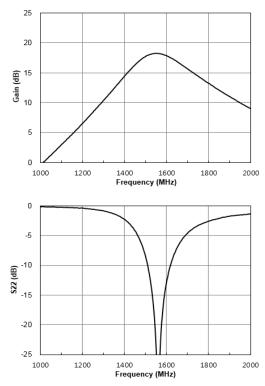

NF vs. Temperature


Gain vs. Temperature

Input IP3 vs. Temperature

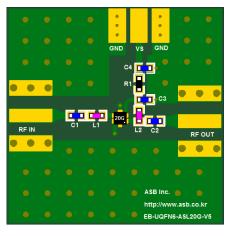


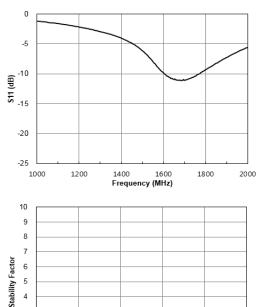
NF vs. Frequency


Low Noise GPS, GLONASS, Galileo and Compass Amplifier

2) Gain and S11 are in trade-off and varied with the length of P1

S-parameters & K-factor




Frequency (MHz)	1559 ~ 1610
Magnitude S21 (dB)	17
Magnitude S11 (dB)	-6
Magnitude S22 (dB)	-18
Noise Figure (dB)	1.1
Input IP3 (dBm) 1)	-16
Output P1dB (dBm)	-9
Supply Current (mA)	2.5
Supply Voltage (V)	+2.7
Control Current (µA)	300
Control Voltage V_{CTL} (V)	+2.7

1) IIP3 is measured with two tones at an input power of

-40 dBm/tone separated by 1MHz.

Board Layout (FR4, 20x20 mm², 0.8T)

3 WW.

2

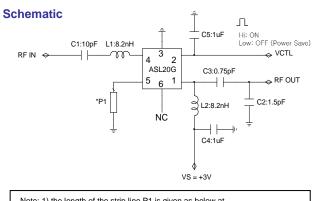
1

0

1000

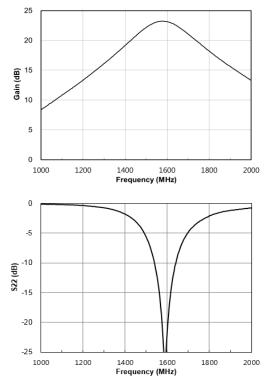
Mul

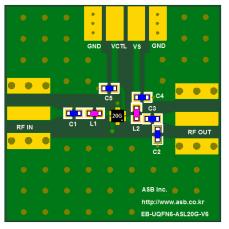
1200

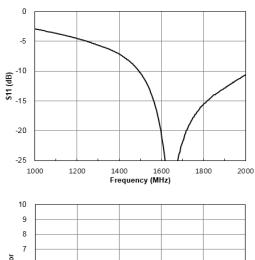

1400

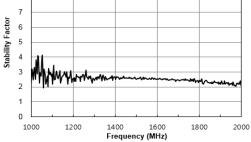
1600 Frequency (MHz) 2000

1800


Low Noise GPS, GLONASS, Galileo and Compass Amplifier

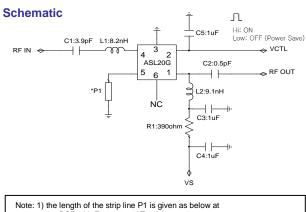

Note: 1) the length of the strip line P1 is given as below at the PCB with Er = 4.5 and T = 0.8 mm. *P1 Length: 1 mm, Width: 0.3 mm 2) Gain and S11 are in trade-off and varied with the length of P1

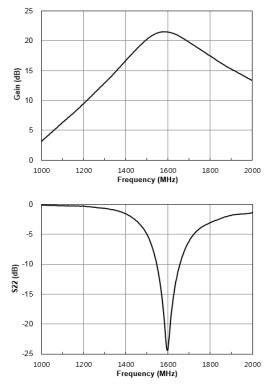

S-parameters & K-factor



Frequency (MHz)	1559 ~ 1610
Magnitude S21 (dB)	22.5
Magnitude S11 (dB)	-15
Magnitude S22 (dB)	-15
Noise Figure (dB)	0.65
Input IP3 (dBm) ¹⁾	-12
Output P1dB (dBm)	0
Supply Current (mA)	12
Supply Voltage (V)	+3.0
Control Current (µA)	300
Control Voltage V_{CTL} (V)	+3.0

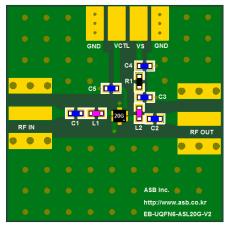
1) IIP3 is measured with two tones at an input power of -40 dBm /tone separated by 1MHz

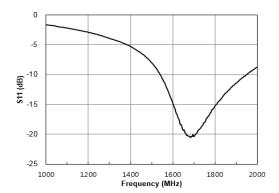


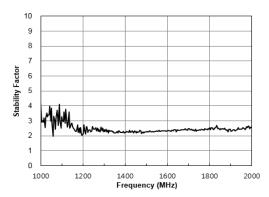

Low Noise GPS, GLONASS, Galileo and Compass Amplifier

APPLICATION CIRCUIT	
GPS, GLONASS, Galileo, Compass	
1559 ~ 1610 MHz	
+3 V, 4 mA	
+3.3 V, 5 mA	

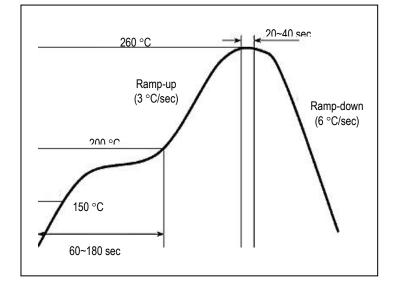
the PCB with $Er = 4.5$ and $T = 0.8$ mm.	
P1 Length: 1 mm, Width: 0.3 mm	
2) Gain and S11 are in trade-off and varied with the length of P1	


S-parameters & K-factor




Frequency (MHz)	1559 ~ 1610	
Magnitude S21 (dB)	21.0	21.5
Magnitude S11 (dB)	-10	-10
Magnitude S22 (dB)	-15	-16
Noise Figure (dB)	0.8	0.8
Input IP3 (dBm) ¹⁾	-18	-17
Output P1dB (dBm)	-4.0	-3.5
Supply Current (mA)	4	5
Supply Voltage (V)	+3.0	+3.3
Control Current (µA)	300	300
Control Voltage V_{CTL} (V)	+3.0	+3.3

1) IIP3 is measured with two tones at an input power of


-40 dBm/tone separated by 1MHz

Low Noise GPS, GLONASS, Galileo and Compass Amplifier

Recommended Soldering Reflow Profile

(End of Datasheet)

Copyright ©2012-2022 ASB Inc. All rights reserved. Datasheet subject to change without notice. ASB assumes no responsibility for any errors which may appear in this datasheet. No part of the datasheet may be copied or reproduced in any form or by any means without the prior written consent of ASB.